Hi There! Welcome!


I’m Maarten Pronk, currently working as a researcher and advisor at Deltares. I have a masters degree in Geomatics, obtained at the TU Delft in the 3dgeoinfo research group. My thesis dealt with storing massive TINs (a whole lot of triangles) in a spatial database.

In my work I like to combine my skillset in IT and GIS, while working on open source projects. I strive to constantly learn new things and connect these pieces of information.

In my free time I tinker with open data, but I also climb, boulder, mountaineer and read books.

for those who wonder about the name of the site: evetion is a combination of two latin words, probably resembling something youthful and innovative, but now long forgotten.

MSc Thesis

In June 2015 I graduated cum laude in a master Geomatics at the TU Delft University. See the TU Delft repository


Solutions have been introduced to handle massive point clouds in Database Management Systems (DBMS), namely by Oracle in 2011 and postgreSQL in 2013. Many common operations on these massive point clouds require knowledge about the original surface in order to analyse them. A possible method to recreate a representation of the original surface is reducing a point cloud to a 2.5D structure such as a Triangular Irregular Network (TIN).

This thesis explores the possibilities to store such massive TINs in a DBMS and presents criteria to define an efficient approach. The term ‘efficient’ is defined by the size of the data structure and the performance of spatial queries. Criteria for an efficient approach are developed by reviewing existing literature and comparisons of existing implementations. These criteria include: (1) the explicit storage of nodes of TIN, preventing duplicate information and resulting in small data structures. (2) the use of atomic functions such as slope, aspect and degree in order to enable analysis of the TIN inside the database. (3) the storage of topological relationships of the TIN, which is used for both atomic functions and spatial access to the TIN. (4) the use of buckets to split the TIN into non-massive sections that can be processed one at a time. A very large spatial index on each element of a TIN is therefore not needed. An index is only applied on the extents of the bucket. The TIN inside the bucket can be traversed using the topological relationships stored.

The main problem encountered is to combine solutions for massive datasets with a TIN data structure, such as the use of buckets with a topological data structure. These problems are overcome by a novel data structure to store TINs in a DBMS called the Multistar. This data structure implements the aforementioned criteria for an efficient approach. The Multistar is compared in practice with the two existing database structures: the SDO_TIN by Oracle and the Simple Feature TIN type implemented in the PostGIS extension of PostgreSQL. This thesis shows that current implementations are not usable for both storing and accessing a massive TIN of 370M points. The Multistar is one of the smallest structures available and outperforms the other data structures significantly on massive TINs.

The complete thesis can be downloaded here


23 Mar 2016 . tech . Tinkering with the BAG

In both my spare time and during work, I like to tinker with open datasets. One of these datasets is the BAG, which contains data about all the addresses and building in the Netherlands. Back in 2013, I was inspired by the Waag Society and created the map shown down below, all with open source tools. In the meantime I have tinkered with the BAG trying to create nice polygons of postal codes, or finding all the relevant houses fit for renovation, based on the type of house, its age and orientation. In the…

View more projects


  • September 2008 - June 2012

    BSc Architecture, Urbanism and Building Sciences

  • September 2013 - June 2015

    MSc Geomatics, graduating in the 3d geoinformation research group.

  • September 2015 - Today

    Working at Deltares as a researcher and advisor, working on open source projects.



Please contact me if you’re interested in collaborating on an open source project or have questions about my thesis.